Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
3.
BMJ Open ; 12(12): e062747, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2137740

ABSTRACT

INTRODUCTION: Kidney transplant recipients (KTRs) are at an increased risk of hospitalisation and death from COVID-19. Vaccination against SARS-CoV-2 is our primary risk mitigation strategy, yet vaccine effectiveness in KTRs is suboptimal. Strategies to enhance vaccine efficacy are therefore required. Current evidence supports the role of the gut microbiota in shaping the immune response to vaccination. Gut dysbiosis is common in KTRs and is a potential contributor to impaired COVID-19 vaccine responses. We hypothesise that dietary fibre supplementation will attenuate gut dysbiosis and promote vaccine responsiveness in KTRs. METHODS AND ANALYSIS: Rapamycin and inulin for third-dose vaccine response stimulation-inulin is a multicentre, randomised, prospective, double-blinded, placebo-controlled pilot trial examining the effect of dietary inulin supplementation prior to a third dose of COVID-19 vaccine in KTRs who have failed to develop protective immunity following a 2-dose COVID-19 vaccine schedule. Participants will be randomised 1:1 to inulin (active) or maltodextrin (placebo control), administered as 20 g/day of powdered supplement dissolved in water, for 4 weeks prior to and following vaccination. The primary outcome is the proportion of participants in each trial arm that achieve in vitro neutralisation of live SARS-CoV-2 virus at 4 weeks following a third dose of COVID-19 vaccine. Secondary outcomes include the safety and tolerability of dietary inulin, the diversity and differential abundance of gut microbiota, and vaccine-specific immune cell populations and responses. ETHICS AND DISSEMINATION: Ethics approval was obtained from the Central Adelaide Local Health Network (CALHN) Human Research Ethics Committee (HREC) (approval number: 2021/HRE00354) and the Sydney Local Health District (SHLD) HREC (approval numbers: X21-0411 and 2021/STE04280). Results of this trial will be published following peer-review and presented at scientific meetings and congresses. TRIAL REGISTRATION NUMBER: ACTRN12621001465842.


Subject(s)
COVID-19 , Kidney Transplantation , Vaccines , Humans , COVID-19 Vaccines , Inulin , Sirolimus , Dysbiosis , Prospective Studies , SARS-CoV-2 , COVID-19/prevention & control , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
4.
Trials ; 23(1), 2022.
Article in English | EuropePMC | ID: covidwho-2034455

ABSTRACT

Kidney transplant recipients are at an increased risk of severe COVID-19-associated hospitalisation and death. Vaccination has been a key public health strategy to reduce disease severity and infectivity, but the effectiveness of COVID vaccines is markedly reduced in kidney transplant recipients. Urgent strategies to enhance vaccine efficacy are needed. Methods: RIVASTIM-rapamycin is a multicentre, randomised, controlled trial examining the effect of immunosuppression modification prior to a third dose of COVID-19 vaccine in kidney transplant recipients who have failed to develop protective immunity to a 2-dose COVID-19 vaccine schedule. Participants will be randomised 1:1 to either remain on standard of care immunosuppression with tacrolimus, mycophenolate, and prednisolone (control) or cease mycophenolate and commence sirolimus (intervention) for 4 weeks prior to and following vaccination. The primary outcome is the proportion of participants in each trial arm who develop protective serological neutralisation of live SARS-CoV-2 virus at 4–6 weeks following a third COVID-19 vaccination. Secondary outcomes include SARS-CoV-receptor binding domain IgG, vaccine-specific immune cell populations and responses, and the safety and tolerability of sirolimus switch. Discussion: Immunosuppression modification strategies may improve immunological vaccine response. We hypothesise that substituting the mTOR inhibitor sirolimus for mycophenolate in a triple drug regimen will enhance humoral and cell-mediated responses to COVID vaccination for kidney transplant recipients. Trial registration: Australia New Zealand Clinical Trials Registry ACTRN12621001412820. Registered on 20 October 2021;https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=382891&isReview=true

5.
Intern Med J ; 52(11): 1884-1890, 2022 11.
Article in English | MEDLINE | ID: covidwho-1978479

ABSTRACT

BACKGROUND: The development of vaccines against SARS-CoV2 has been a key public health response to the COVID-19 pandemic. However, since their introduction, there have been reports of anaphylactic reactions to vaccines in individuals with history of allergic reactions to other vaccines, excipients or to COVID vaccines. AIM: A dedicated adult COVID vaccine allergy clinic with a standardised allergy testing protocol was set up to investigate safety and suitability of available COVID vaccines in Australia. METHODS: Patients referred to a state-wide COVID-19 vaccine allergy clinic between March and August 2021 with a history of allergy underwent skin-prick testing and intradermal testing to both available vaccine formulations (BNT162b2 and ChAdOx1-S), excipients (polyethylene glycol and polysorbate 80), excipient-containing medications and controls. Basophil activation testing was conducted in few subjects with convincing history of immediate type reactions. RESULTS: Fifty-three patients underwent testing for possible excipient allergy (n = 19), previous non-COVID vaccine reaction (n = 13) or previous reaction to dose 1 of COVID-19 vaccine (n = 21). Patients were predominantly female (n = 43, 81%), aged 18-83 (median 54) years. Forty-four patients tested negative and 42 of these received at least their first dose of a COVID-19 vaccine. Nine patients tested positive to excipients or excipient-containing medication only (n = 3), or vaccines (n = 6). Five patients were positive to just BNT162b2, 3/5 have been vaccinated with ChAdOx1-S. One who was skin test positive to both vaccines, but negative BAT to ChAdOx1-S was successfully vaccinated with ChAdOx1-S. CONCLUSION: Even in a high-risk population, most patients can be vaccinated with available COVID-19 vaccines. This paper reports local experiences using a combined allergy testing protocol with skin testing and BAT during the pandemic.


Subject(s)
Anaphylaxis , COVID-19 Vaccines , COVID-19 , Adult , Female , Humans , Male , Anaphylaxis/etiology , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Excipients/adverse effects , Pandemics , SARS-CoV-2 , South Australia , Vaccination/adverse effects , Adolescent , Young Adult , Middle Aged , Aged , Aged, 80 and over , ChAdOx1 nCoV-19
7.
Allergy Asthma Clin Immunol ; 18(1): 22, 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1736434

ABSTRACT

BACKGROUND: Immediate hypersensitivity reactions to COVID-19 vaccines have been postulated to be linked to their excipients, such as polyethylene glycol (PEG) in Pfizer Comirnaty, or polysorbate 80 and ethylenediaminetetracetic acid (EDTA) in AstraZeneca ChAdOx1-S [recombinant] (Vaxzevria). These excipients are found in a range of other products, including injectable and oral medications as well as intravenous radiocontrast media (RCM) and various cosmetic products. Patients with proven excipient allergy may be advised to avoid a COVID-19 vaccine containing that excipient and/or potentially cross-reactive excipients. This may result in individual patients not receiving vaccines, especially if an alternate option is not available, and on a broader level contribute to vaccine hesitancy. We present two cases of previously confirmed EDTA anaphylaxis with positive intradermal testing, who had negative Vaxzevria vaccine in-vivo testing and subsequently tolerated the vaccine. CASE 1: A patient with history of anaphylaxis to RCM and local anaesthetics (LA) had positive intradermal test (IDT) to EDTA nine years earlier. Skin testing to Vaxzeria vaccine (up to 1:10 IDT), Comirnaty vaccine (up to 1:10 IDT) and EDTA 0.3 mg/mL IDT were negative. However, following EDTA 3 mg/ml IDT, he developed immediate generalised urticaria without anaphylaxis. Basophil activation testing was negative to disodium EDTA, Vaxzevria and Cominarty vaccines. Given the negative in-vitro and in-vivo testing to Vaxzevria vaccine, he proceeded to Vaxzevria immunisation and tolerated both doses. CASE 2: A patient with history of anaphylaxis to RCM had positive skin testing to EDTA and RCM containing EDTA six years earlier. Following referral to COVID19 vaccine clinic, Vaxzevria vaccine (1:10 IDT) and Cominarty vaccine (1:10 IDT) were negative whilst EDTA was positive at 0.3 mg/mL IDT. He subsequently tolerated both Vaxzevria vaccinations. CONCLUSION: Excipient allergy does not necessarily preclude a patient from receiving a vaccine containing that excipient. Allergy testing can help identify excipient-allergic patients who may still tolerate vaccination, which is important in situations where COVID-19 vaccination options are limited.

SELECTION OF CITATIONS
SEARCH DETAIL